If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12=-16t^2+136t
We move all terms to the left:
12-(-16t^2+136t)=0
We get rid of parentheses
16t^2-136t+12=0
a = 16; b = -136; c = +12;
Δ = b2-4ac
Δ = -1362-4·16·12
Δ = 17728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17728}=\sqrt{64*277}=\sqrt{64}*\sqrt{277}=8\sqrt{277}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-136)-8\sqrt{277}}{2*16}=\frac{136-8\sqrt{277}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-136)+8\sqrt{277}}{2*16}=\frac{136+8\sqrt{277}}{32} $
| 3x=10+2¥ | | (2x+7)2=(2x+1) | | 4n-3=2n+9= | | 13=m-2-5 | | 8x+3x=1 | | (Y+5)(y+2)=(y+1)(y-3) | | 5=14÷x-2 | | 66=8u−14 | | 8n-16=12n-28 | | 4(x-2)=2(6-3x) | | 72−x=20·3 | | 75x=55 | | 7a=12a-6 | | 7/(x+3)=3/(x-1) | | -(2/3a-1/3)+1/3a=-4 | | 8+8x=9x+4 | | 0.7x-10=-12 | | a-14=3 | | -3(-3x+12)-4x=10-6 | | −18x+9=72 | | 44+2x=10x-4 | | 2x+2x+8=4012x=40x=40/12 | | 3x+12+2x+10=4 | | 112+19=x+180 | | 4x-2x+12=40 | | 6(-2x-4)=-2x+6 | | 7z+13=2z+43 | | 4x-2(3-2x)=12 | | 15x-9=512 | | -3x+12=123 | | -1/4y=-3 | | 7x-7=3×-23 |